
INTRODUCTION

Optimization of fundamental frequency is an emerging 

topic of interest for structural engineers. The word 

fundamental natural frequency means the first natural 

frequency for the given distribution of material in the 

design domain. Optimization of frequency increases the 

stiffness of the structure and reduces the mass of the 

structure. A stiff structure is the one which has least 

displacements when certain boundary conditions are 

applied (Angulo et al., 1994). The displacements are 

measured to find the strain energy of a structure, where 

the strain energy is inversely proportional to the stiffness. 

The method is based on an iterative process of 

optimization that includes structural analysis by the Finite 

Element Method (FEM) (Krishnamoorthy, 1994). Sensitivity 

analysis, and optimization techniques, the distribution of 

material must be effectively done to maximize the 

fundamental frequency. The structures with high 

fundamental frequency tend to be reasonably stiff for all 

conceivable loads and hence the optimization of 

fundamental frequency results in designs which are good 

for static loads also (Yang et al., 1999).

This paper primarily deals with the sensitivity analysis and 

optimization of fundamental frequency to perform 

topology optimization of a plate element carrying in 

plane loading with the given boundary conditions.  Sever-

al optimization methods such as the Homogenization 

method, the Solid Isotropic Material with Penalization 

(SIMP) method, the Evolutionary Structural Optimization 

(ESO) method (Lee, 2012), and its later version Bi-

directional ESO (BESO), the level set technique have been 

developed in this context. Frequency optimization is of 

great importance in many engineering fields e.g. 

aeronautical and automotive industries (Kingman et al., 

2014). When compared with a large number of papers for 

stiffness optimization, fewer papers have been published 
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with frequency optimization problems. When optimizing 

the topology of a structure it is natural to demand the 

solution to consist of clearly separated material and void, 

preferably with a material distribution possible to 

manufacture. This implies the use of a discrete variable for 

each element state, either material or void (Rozvany, 

2009). The final result of a topology optimization reflects 

the optimal material distribution in the design space.

1. Objectives of the Study

·The main objective is to optimize the fundamental 

frequency and perform sensitivity analysis of the plate 

structure in plane stress loading condition. A combination 

of Finite element method and Evolutionary algorithm 

is to be used for optimizing the natural frequency of 

the structure.  

·To reduce the volume of the structure. 

1.1 Scope of the Study

·The study does not include buckling analysis.

·Linear static analysis is performed.

·The material obeys Hooke's law.

1.2 Structural Optimization

Structural optimization is today a very wide concept. A 

Structural Optimization problem achieves the best 

performance of the structure. A solution to a structural 

optimization problem is to configure the design variables 

in the best possible value of the performance function. 

The constraints include volume and weight of the structure, 

the structural performance such as stiffness, natural 

frequencies, buckling loads, maximum displacements, 

stresses, strain energy etc. (Van den Boom, 2014).  

1.3 Topology Optimisation

A Mathematical method that optimizes the material 

within a given set of loads, boundary conditions and other 

constraints in order to maximize the system's performance 

and providing optimal structures (Lewinski et al., 2013). 

Topology is a word which means place or a position. The 

simple idea of topology is the removal of less efficient 

materials from the structure. The Topology Optimisation 

extends its application in structural domain for various 

number of holes, location, shape and their connectivity 

(Karadelis, 2010). The methodology of optimisation is to 

solve for minimum weight with stress constraints iteratively. 

One of the weight optimisation includes the sensitivity 

analysis wherein a sequence of steps are required to 

perform the optimisation. The first step is to perform the 

structural analysis using Finite Element Method and 

calculate the relative density (Kütük, & Göv, 2013). In the 

second step, the objective function is computed based 

on the weight of the structure. The third step requires the 

computation of stress constraints to verify the active 

constraints.

1.4 Evolutionary Structural Optimization

This approach is a combination of heuristic methods and 

gradient based approaches. For maximizing the stiffness, 

the stress is replaced by elemental strain energy criteria. In 

ESO approach the low sensitivity elements are not 

removed completely but are assigned with weak material 

property. The similar sensitivity scheme is employed for 

ESO as SIMP to avoid any numerical instabilities in the 

optimization problems. The ESO algorithms achieve a 

high quality solutions with an easy understanding and 

good computational efficiency. 

2. Literature Review

Sarkisian et al. (2009) in their paper conveyed that the 

Structural Optimisation has increasing interest in building 

industry especially in the design of high rise buildings by 

distributing the members in such a way that the design 

efficiency can be optimized. Results show that the shape 

of tower which is deformed is similar to that of a cantilever 

beam. Two phases of optimization is performed, where in 

phase 1 genetic algorithm is used to identify the spacing, 

cable diameter, and pitch, where pitch is uniform over 

height of the tower. In phase 2 the pitch varies over the 

height of the tower and optimization is performed. 

Malekinejad et al. (2016) in their paper on free vibration 

analysis, proposed an equivalent approach. For dynamic 

analysis of framed tube, shear core and outrigger belt 

truss in high rise buildings is treated as a continuous 

discrete system wherein beams and columns are 

replaced by membranes. Lee and Bae (2010) from 

Gyeongsang National University from their paper 
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described a topology optimization technique which can 

maximize the fundamental frequency of the structures. 

Paris et al. (2010) said that the basic issue in optimisation of 

structures is sensitivity analysis. This paper includes an 

efficient procedure and a complete analytic, to perform 

Topology optimization of continuum structures and the 

whole derivation process to obtain stress constraints from 

sensitivity analysis. The topology optimization of solid 

structures includes the determination of the location and 

shape of holes, and the connectivity of the domain. His 

thesis mainly constitutes with topology optimization of flat 

shell elements considering the four nodes, and hence the 

assumed strain for the shear flexible plate element and a 

membrane element are with drilling degrees of freedom. 

Zhang et al. (2015) investigated an optical design of 

photonic band gap structure as the model problem. The 

optimization problem in a domain where the material is in 

homogeneity so that the localization is done for an Eigen 

mode which in particular is governed by the scalar 

Helmholtz equation. Takezawa and Kitamura (2013) in his 

paper formulated the main objective function as 

minimizing the first and second eigen frequencies mode 

shape and the targeted mode shape by using the least 

squared error. Using COSMOL Multiphysics, the state and 

adjoint equations are solved. Tsai and Cheng (2013) in 

their paper proposed a technique to determine the 

distribution of a material of a structure. The SIMP method is 

used to design objective for topology optimization of 

continuum structures. Generally, in the optimization 

process, to maximize the natural frequency and prevent 

mode switching, the weighted constraints with bound 

formulation are proposed. Alavi et al. (2017) said that the 

observed dynamic responses in modern tall and slender 

structures, are considered as main design requirements 

instead of strength. The fundamental Eigen frequency of 

higher order is maximized to avoid this problem. To a real 

life structure, accuracy and practicality of this method is 

applied. The practical constraint of lower bound on 

stiffness is modified and added to the problem of 

optimization. Challis (2010) in his paper presented a new 

method for topology optimization that is a compact 

MATLAB implementation of the level set method. The 

code is derived such that the compliance of a statically 

loaded structure is minimized. The main program in short 

includes the initialization procedure, an iteration loop for 

performing the optimization and last step includes the 

convergence check. The function update step 

implements an update in the design using the shape and 

topological sensitivity information. Siu et al. (2003) said 

that the general problem for the Structural engineers is 

always to deal with the optimization of construction cost. 

The members in the design are grouped under a single 

category in our computer modelling and analysis. The 

local level constraints are used for the strength 

requirements of a member in moderate and large scale 

structures. Due to wind pressure, the structural system uses 

the concrete for resisting the lateral deflection. Augusto et 

al. (2012) in his paper constitutes two new approaches for 

the multi objective design optimization problems. Here 

the performance of the functions are highly susceptible to 

limited number of variations in the design variables and/or 

design environment parameters. Allaire et al. (2004) in the 

journal paper presented a new numerical method in the 

context of structural optimization for front propagation 

which is based on the combination of level set methods 

and classical shape derivative. On a fixed Eulerian mesh, 

the shape is captured and hence moderate is the cost of 

this numerical algorithm. Yang et al. (2015) in his paper 

proposed an enhanced as well as a best PSO and 

geometrical consistency check while tightly connecting 

to the ground structure approach. His contribution on 

MLPSO and its combination with the quadratic penalty 

function proved effective. 

3. Methodology

The evolutionary swarm intelligence algorithms have 

been used to find the best optimal solutions. The initial 

population size is taken and the connectivity analysis is 

performed where in the elements are checked for edge 

to edge connectivity in case for 2D, leading to one of the 

seed elements. By edge to edge connectivity, it means 

that each element has a continuous edge in common 

with the other elements. The seed element refers to the 

element which always carries the material during the 

entire process of optimization, usually the support 
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elements or the load carrying elements can be 

considered as seed elements and the presence of 

material in these elements must be ensured at all the 

times. Connectivity analysis is also performed on initial 

population size so as to generate better individuals. The 

elements which are having corner connectivity are not 

considered as corners as they cannot transfer any 

moment.

The initial connectivity analysis followed by finite element 

analysis will help to generate the structures that are stable 

and have better values. This optimizer algorithm was 

proposed by Xin She Yang in 2009 by the name of Levy 

firefly algorithm (Yang, 2010). The objective function is 

formulated for a set of equations and analyzed. 

thwhere, x  is the k  component of the spatial co-ordinate x  i,k i

thof i  firefly 

    (1) 

Levy Paul Pierre distribution, Levy=

The steps of firefly is drawn from a levy distribution random 

walk with a power law step length distribution with a heavy 

tail. drho is the sensitivity factor. The plate structure is 

initially discretized into a number of finite elements using 

quadrilateral elements. Each element comprises of four 

nodes and each node has two degrees of freedom. The 

plate is defined with material properties, kinematic 

boundary conditions, loading and support conditions with 

certain constraints. The finite element analysis is 

performed and there by the Stiffness matrix is generated. 

As the force vector is known the displacement matrix is 

determined for the continuum. The stresses and strains are 

determined, and the objective function for the initial 

value is calculated. The Eigen values are the eigen 

frequencies which are obtained by LDLT transformation 

(Sundar & Bhagavan, 2000) and by reducing to a 

standard format. The Arnold algorithm is used for a 

tridiagonal format. The objective function is to perform the 

frequency optimization. The firefly algorithm is used as an 

optimizer to perform stress based sensitivity analysis. The 

mass of the material eventually gets reduced as the 

frequency is maximized. The relative density of the each 

element is calculated, and the elements are 

differentiated based on the black and white colours 

where the black represents the full material which carry 

the load, and the white colour '0' represents no load. The 

distribution of the material having better value is 

generated. A graph with fundamental frequency on Y axis 

versus the iteration number on X axis is plotted. The best 

iterated value is presented.

3.1 Problem Statement

The problem statement is defined here in this section as 

follows.

Maximize fundamental frequency l

subject to,

σ  - σ   ≤  0Prin,e Allow

u - u ≤  0Nodal Allow  

0  ≤  ρ ≤  ρ ≤ 1min  e 

(K-λ  M) Φ= 0, where j=1j j 

The objective is to optimize using the fundamental 

frequency and find the minimum weight of the structure 

subject to the constraints on the amount of material used 

and the elemental centroidal stresses and nodal 

displace-ments in the structure.

The corresponding global stiffness matrix (K) and mass 

matrix (M) are given by,

4. Theoretical Background

Sensitivity analysis is presented accordingly as explained.

4.1 Sensitivity Analysis 

We propose Sensitivity analysis using the principal stresses here.

The governing equation is given by,

K(ρ)α(ρ)=f(ρ)

where K is the stiffness matrix, f is the force vector which are 
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functions of the relative density.

The vector of displacements α can be obtained as,

(2)

4.2 Proposed Sensitivity Analysis using Principal Stresses

At the centroid of an element, the stress is given by,

(3)

where 'D' is the elasticity matrix, B is the strain displacement 

matrix, α is the displacement vector, 'ρ' is the relative 

density of each element and 'p' is the penalization factor. 

The normal and tangential stresses on any plane inclined 

at angle θ with the plane carrying normal stress σ  and x

accompanied by a shear stress t is given in Figure 1.xy

Consider the force equilibrium on the elementary portion 

for the plane AC having unit thickness and inclined at an 

angle θ with the vertical AB, we have,

Forces perpendicular to the plane AC,

σ  AB cosθ +  t AB sinθ+σ  BC sinθ+t BC cosθx xy y xy

Forces parallel to the plane AC,

σ  AB cos (90-θ) - t AB cosθ - σ  BC cosθ + t BC cos x xy y xy

(90-θ)

The triangle ABC is a right angled triangle,

AB=AC cosθ, BC=AC sinθ

The normal stress on the inclined plane AC is given by,

The tangential stress on the inclined plane AC is given by,

To determine the principal planes, the tangential stress is 

set equal to zero.

Determine the Principal stresses σ and σ .1 2

(4)

4.3 First Order Sensitivity Analysis

(5)

Let,
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4.4 Second Order Sensitivity Analysis

(6)

4.5 Taylor's Series

We use the following approach of second order 

approximation using Taylor's series,

Minimize f(x ).k

Using Taylor series, we have,

For maximum or minimum, first derivative is equal to zero.

The change in the relative density of the element is,

5. Analysis

We proposed a new sensitivity analysis, a set of individuals 

search the de-sign domain and determine the optimum 

values of the relative densities for every element. The 

advantage of using this approach is to determine the 

distribution of material which not only satisfy the boundary 

conditions namely natural boundary conditions, and 

kinematic boundary conditions but also perform the 

optimization based on fundamental frequency of the 

material distribution as shown in the Figure 2. The final 

distribution of material is frequency optimized and also 

satisfy the boundary conditions at the convergence. As a 

result, the weight of the structure is also reduced. In this 

section, a few examples are solved using the proposed 

formulation based on the sensitivity analysis using the 

principal stress at the centroid of each element. The final 

distribution of the material obtained from C++ program 

is smoothened in Auto CAD® and analysed using 

MATLAB®.

5.1 Standard Benchmark Problems

5.1.1 Problem 1

A cantilever plate is fixed at the left-top and left-bottom. 

As shown in the Figure 3 the plate is 0.16 m by 0.10 m in 

size. The domain is discretized using 16 x 10 = 160 first 

order four node quadrilateral elements. The total number 

of nodes is 187. The cantilever plate carries an in plane 

loading of P as 3000 N at the bottom node point on the 

right side. The Young's modulus of the material is equal to 

200 GPa and the Poisson's ratio is equal to 0.33. The 

thickness of the plate is taken as 1 unit. The allowable stress 

for the material is taken as 200 MPa (Luh et al., 2011).

The static displacement is as shown in the Figure 4. The 

maximum Y-displacement is found to be 0.74 mm. Figure 

6 shows the variation of the normalized fundamental 

frequency with each iteration. The maximum value of first 

frequency is 533.249% higher than the initial frequency.  
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The optimization process took 87 functional evaluation 

computations using the proposed method when 

compared to 36000 functional evaluations by Guan 

using particle swarm optimization as shown in Table 1. The 

volume of material in the optimal distribution by Guan is 

58.125% of initial volume when compared to the volume 

of optimal distribution 32.5% of the initial volume using 

Eigen FFA study. Figure 5 shows the fundamental mode 

shape and the square of the fundamental frequency is 
2 267100 rad /s . Lin and Hsu (2008) has optimized a similar 

problem in Foot Pound Second (FPS) system.

5.1.2 Problem 2

thA Cantilever plate carrying a point load at the 2/5  distance 

from the right bottom corner. A cantilever plate is fixed at 

the left-top and left-bottom as shown in the Figure 7. The 

plate is 0.16 m by 0.10 m in size. The domain is discretized 

using 16 x 10 = 160 first order four node quadrilateral 

elements. The total number of nodes is 187. The cantilever 

plate carries an in plane loading of P=3000 N at a 
thdistance of 2/5  from the bottom node point on the right 

side. The Young's modulus of the material is equal to 200 

GPa and the Poisson's ratio is equal to 0.33. The thickness 

of the plate is taken as 1 unit. The allowable stress for the 

material is taken as 200 MPa (Luh et al., 2011).

Figure 8 shows the static Y-displacement for the final 

distribution. The maximum Y-displacement is found to be 
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Figure 4. The Y-displacements

Figure 5. The First Mode Shape

Figure 6. Graph Showing the Variation of Normalized Fundamental
Frequency on Y-axis with Iteration on X-axis for a Cantilever

Carrying a Point Load at the Corner

Figure 7. The Cantilever Plate Carrying a Point Load at
ththe 2/5  Distance from the Corner
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Table 1. Comparison of the Volume After Optimisation.

Final Volume (%) 

Number of FE computations

58.125

36000

Luh et al. (2011)
(Case 2)

32.5

87

This Study using
Eigen FFA



0.69 mm in the vertically downward direction. Figure 11 

shows the variation of the normalized fundamental 

frequency with each iteration. The maximum value of first 

frequency is 501.59% higher than the initial frequency.  

The optimization process took 142 functional evaluation 

computations using the proposed method when 

compared to 36000 functional evaluations by Guan 

using particle swarm optimization as shown in Table 2. The 

volume of material in the optimal distribution is 35.625% 

as compared to 57.968% of the initial volume by Guan.  

Figure 9 and Figure 10 present the first mode and the 

second mode of vibration respectively. The square of the 

fundamental frequency and second frequency of vibration 
2 2 2 2are 106900 rad /s , 528600 rad /s  respectively.

6. Future Study

The present study can be further extended to perform the 

frequency optimisation of structures discretized using first 

order six node hexagonal elements as shown in the Figure 12.  

The frequency optimisation of shell structures is also an 

emerging area of research in the field of structural 

engineering and optimisation.

2 2The square of the optimal frequencies are 95.8619 rad /s  
2 2and 121.4242 rad /s  for the first mode and second mode 

of vibration respectively.  

7. Discussion of Results

In addition to the frequency optimisation the final volume 

of material carrying the loads is also reduced during the 

optimisation process. The positive results gave an insight 

to develop algorithm which is presented here. 

For a cantilever plate which is fixed at the left-top and left-

bottom corner and carrying the load at the right hand 

bottom corner the frequency is maximized by 533.249%. 
2 2The square of the fundamental frequency is 67100 rad /s . 

The final volume of the material is 32.5% in 87 iterations 

compared to final volume of 58.125% by Guan using 

Particle Swarm Optimisation algorithm in 36000 iterations.

thFor a cantilever plate carrying a point load at the 2/5  

distance from the right bottom corner, the frequency is 

maximized by 501.59% higher than the initial frequency.  

The square of the fundamental frequency and second 
2 2 2 2frequency of vibration are 106900 rad /s , 528600 rad /s  

respectively. The final volume of the material is 35.625% in 
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Figure 9. The First Mode Shape

Figure 10. The Second Mode Shape
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Table 2. Comparison of the Volume After Optimisation

Final Volume (%) 

Number of FE computations

57.96875

36000

Luh et al. (2011)
(Case 4)

32.625

142

This Study using
Eigen FFA



142 iterations compared to final volume of 57.968% 

obtained by Guan using Particle Swarm Optimisation 

algorithm in 36000 iterations.

Conclusion

Topology optimization has been the structural engineer's 

topic of research in the recent past over the last sixty years. 

The objective of this paper, is to propose stress based 

second order sensitivity analysis and use Firefly algorithm 

to optimize the frequency of continuum structures. The 

Metaheuristic Firefly algorithm can optimize not only faster 

but also computationally less expensive. The higher order 

derivatives are important in determining changes in 

parameter variations using Taylor series expansion. In 

particular, second order derivatives are also used in 

optimization techniques and stability analysis. The ESO 

method is very simple to program via. the FEA packages 

and requires a relatively small amount of time. The 

elements that are not carrying any load are removed and 

consequently constitute relatively fully stressed designs. 

The topology optimization technique for optimizing the 

fundamental frequency of the structure is used to 

produce optimum topologies of the continuum structures.  

A few sample problems have been solved and we found 

that the output of this research when compared with those 

existing in the literature leads to lowest weight distribution 

of material.  
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